Activity-based probes for proteomic profiling of histone deacetylase complexes.
نویسندگان
چکیده
Histone deacetylases (HDACs) are key regulators of gene expression that require assembly into larger protein complexes for activity. Efforts to understand how associated proteins modulate the function of HDACs would benefit from new technologies that evaluate HDAC activity in native biological systems. Here, we describe an active site-directed chemical probe for profiling HDACs in native proteomes and live cells. This probe, designated SAHA-BPyne, contains structural elements of the general HDAC inhibitor suberoylanilide hydroxamic acid (SAHA), as well as benzophenone and alkyne moieties to effect covalent modification and enrichment of HDACs, respectively. Both class I and II HDACs were identified as specific targets of SAHA-BPyne in proteomes. Interestingly, multiple HDAC-associated proteins were also enriched by SAHA-BPyne, even after denaturation of probe-labeled proteomes. These data indicate that certain HDAC-associated proteins are directly modified by SAHA-BPyne, placing them in close proximity to HDAC active sites where they would be primed to regulate substrate recognition and activity. We further show that SAHA-BPyne can be used to measure differences in HDAC content and complex assembly in human disease models. This chemical proteomics probe should thus prove valuable for profiling both the activity state of HDACs and the binding proteins that regulate their function.
منابع مشابه
Optimization of activity-based probes for proteomic profiling of histone deacetylase complexes.
Histone deacetylases (HDACs) are key enzymatic regulators of the epigenome and serve as promising targets for anticancer therapeutics. Recently, we developed a photoreactive "clickable" probe, SAHA-BPyne, to report on HDAC activity and complex formation in native biological systems. Here, we investigate the selectivity, sensitivity, and inhibitory properties of SAHA-BPyne and related potential ...
متن کاملBioactive Salen-type Schiff Base Transition Metal Complexes as Possible Anticancer Agents
Although metal-based anticancer drugs have been recognized as the most effective agents over the organic compounds, non-selectivity and high toxic effects have limited their applications in a way that only three Pt-analogues have progressed into clinical use. These problems have spurred chemists to develop different strategies based on alternative targets. This work focuses on predicting potenc...
متن کاملBioactive Salen-type Schiff Base Transition Metal Complexes as Possible Anticancer Agents
Although metal-based anticancer drugs have been recognized as the most effective agents over the organic compounds, non-selectivity and high toxic effects have limited their applications in a way that only three Pt-analogues have progressed into clinical use. These problems have spurred chemists to develop different strategies based on alternative targets. This work focuses on predicting potenc...
متن کاملNuclear cGMP-Dependent Kinase Regulates Gene Expression via Activity-Dependent Recruitment of a Conserved Histone Deacetylase Complex
Elevation of the second messenger cGMP by nitric oxide (NO) activates the cGMP-dependent protein kinase PKG, which is key in regulating cardiovascular, intestinal, and neuronal functions in mammals. The NO-cGMP-PKG signaling pathway is also a major therapeutic target for cardiovascular and male reproductive diseases. Despite widespread effects of PKG activation, few molecular targets of PKG are...
متن کاملAutomated Structure-Activity Relationship Mining: Connecting Chemical Structure to Biological Profiles.
Understanding the structure-activity relationships (SARs) of small molecules is important for developing probes and novel therapeutic agents in chemical biology and drug discovery. Increasingly, multiplexed small-molecule profiling assays allow simultaneous measurement of many biological response parameters for the same compound (e.g., expression levels for many genes or binding constants again...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 104 4 شماره
صفحات -
تاریخ انتشار 2007